Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

UDC 004.415.2
DOI https://doi.org/10.32838/2663-5941/2021.5/21

Oleshchenko L.M.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Medvedev M.G.
V.1. Vernadsky Taurida National University

Kobryn D.R.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Sukalo M.L.
National University of Food Technologies

AGENT MODELLING SOFTWARE OF POPULATION BEHAVIOR

IN EMERGENCY SITUATIONS

The ability to predict the movement of people is very valuable in many contexts. Panic situations are

likely to have been the biggest influence on the development of solutions to model crowd behavior. The paper
considers research on the movement of crowds of people in emergencies and analyzes the existing frameworks
and software for agent modeling of the crowd. Based on the research on the behavior of people in the crowd
and available approaches to modeling the movement of people and the crowd in an emergency, the software
requirements were formulated: the ability to configure each of the agents, the ability to change the geometry of
the premises; parameterization of the model; correct operation of algorithms with a large number of agents;
taking into account the field of view of agents; realization of observance of personal space of the person;
implementation of an algorithm to change the trajectory of motion in a collision, realization of the phenomena
of crowd panic; calculation of crowd density; the possibility of random distribution of agents, possibility
of manual distribution of agents, import and export the result of the program analysis in JSON format. The
general description of architecture and the developed software modules of the created software is presented.
The created modules include an environment module, an agent module, an agent generation module, a scene
editing module, a database interaction module. Describes the architecture of software developed on the Unity
platform and how all components interact with each other. A* Pathfinding Project technologies were used to
develop the software to provide flexible and reliable path finding, the Django framework to create a storage

server API, an additional djongo library to integrate with MongoDB database.
Key words: software, emergency, agent modelling, Python, Django framework, Unity, MongoDB.

Introduction. Problem statement. A crowd is a
large group of disorganized people that can be described
as a temporary gathering of a large number of people
who respond almost equally to a particular stimulus. In
people’s lives, especially in megacities and big cities,
there is always a place of movement in large crowds.
It can be either a daily morning queue in the subway or
an idol concert attended by tens of thousands of people.
Thousands of mass events take place every year around
the world, during which many people are injured due
to the danger of the crowd. This is caused by a certain
emergency that causes panic in the crowd. Sometimes
the emergency itself poses a much lesser threat than the
unpredictable behavior of the crowd. Such situations are
influenced by a number of factors such as the geometry
of the premises, the number of exits, as well as the
cause of the panic, the reaction of the crowd and the

132 Tom 32 (71) N2 52021

effectiveness of the evacuation. The panic, the crowd in
general in certain situations is much more dangerous than
the emergency that caused it. Emergencies are difficult
to prevent, it is possible to change external factors and
try to minimize the consequences of irrational human
behavior. Everyone in the crowd has own behavior,
which is extremely difficult to convey through a model.
The complexity of the behavior of the human masses
is associated with the presence of behavioral patterns:
clustering, queuing, setting routes that people use
almost every day on a subconscious level. In order
to experiment with different factors of the system,
improve the quality of predicting the consequences of an
emergency and identify deficiencies in crowded places,
a flexible software tool is needed to model the behavior
of the crowd with the ability to simulate different types
of agents and their environment.

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Related research. There is a wide range of
programs for simulating the movement of human
masses such as: Menge framework, Pedestrian
Dynamics, Crowd Dynamics, DI-Guy. After
analyzing these products and the projects in which
they are used, we can conclude that the creation of
systems for predicting the behavior of crowds and
individual crowds is of interest to both government
agencies and private companies.

The main goal of the article is to create software
that allows to model and predict the behavior of the
crowd in an emergency.

An overview of existing software products

In recent years, the simulation of crowds and
groups of people has become increasingly important
not only in the field of design. The products created
on the market vary from systems for modeling the
flow of people in emergencies and logistics solutions
in the design of architecture. To studying people’s
behavioral patterns, one of the goals of such research
was to develop animated realistic programs for
urban design, planning, and the game industry. In
a familiar environment, each person shows some
common behavioral attributes. People always try to
find the shortest way to the goal, if it is possible to
avoid a change of direction, they will go through the
crowd, showing the basic principle of “least effort”
where everyone tries to save time and energy. Most
habitual and rational behavioral patterns disappear as
soon as people are exposed to an emergency or other
stimulus or stimulus. In such emergencies, the crowd
shows completely different patterns. People who try
to get out of a room as fast as possible, for example,
start moving much faster, trying to overtake others,
and this is why the characteristic formations around
bottlenecks appear. These clusters do not allow
people to move freely and, thus, the speed of the flow
of people in the crowd becomes much slower.

I)cnsir)f

{occs/m”

4
3.65

5|

2.96
2.62

2.28
1.93
1.59
1.24
0.895

0.55

Fig. 1. Characteristic arched formations around
the entrance to the stairs [1]

People who entered the building through a certain
entrance and do not know its structure, in a panic
will try to first reach the same entrance, rather than
looking for the nearest emergency exit, which can
be closer and safer [1]. In an emergency, people who
easily panic show the phenomenon of herd behavior,
during which they recklessly try to join the largest
group of people.

Fig. 2. Demonstration of herd behavior [1]

Such behavioral phenomena in panic usually cause
the most injuries and casualties in crowds caused
by an emergency. As the nervousness of the crowd
increases, each individual pays less attention to other
people’s comfort zones and tries to achieve his goal,
and this sometimes results in violent behavior of
the crowd, during which people begin to push, grab
others, despite people falling, trampling their. In the
process of reviewing the existing available models,
it was determined that the situations of modeling
emergencies and their consequences are very closely
related to the specific state of individual agents. The
real crowd is an extremely complex entity in terms of
predicting behavior, because every second each person
in the crowd makes many decisions, which at the same
time are influenced by almost everyone in the crowd,
as well as physiological, psychological and social
factors of each entity. Mathematical approaches and
analytical models are not able to predict the behavior
of the crowd with sufficient reliability. If we consider
scientific research in the field of pedestrian dynamics,
then all the created models are subject to two
scales of simulation: microscopic and macroscopic.
Microscopic models consider the position of each
element of the crowd as a separate discrete part of
the simulation. Macroscopic models, on the other
hand, perform a simulation as an averaged distributed
representation of the entire crowd and consider the
crowd in space using variables such as density, flow,
and front. Models are usually created on the basis of
some phenomenological assumptions, therefore, they
are likely to reproduce a fairly similar behavior of
crowds with the number of N elements.

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

Among all the analyzed approaches to solving
the problem of crowd modeling, the following main
approaches were identified.

The approach of cellular automata. In this
approach, the space allocated for behavior modeling
is a set of cells that create a lattice with certain
rules of transition from state to state. The room is
considered as a field of the cellular automaton. Thus,
each cell is essentially a finite automaton, the state of
which depends on the state of its neighboring cells.
For example, a cell with a “busy” state contains a
human and the simulation is performed by changing
and analyzing the states of a plurality of cells. On the
one hand, this method of modeling gives a very fast
to calculate O(N), but at the same time simplifies and
averages the forces of interaction, which affects the
realism of the model.

Approach based on Newtonian mechanics. In this
approach, each effect of the environment on the object
is reflected by a certain force that tries to change the
position of the simulation element. The motion is thus
described by Newton’s second law. The advantage of
this approach is that each element can affect all other
elements, thus allowing unlimited complication of the
interaction process by adding new vector forces. One
of the main disadvantages of such models is that the
time complexity of such an approach is O(N?), which
makes it very inefficient with great detail of the process.

Approach based on physical processes of liquids
and gases. In such approaches, each element of the
crowd is a particle whose state is described by a certain
equation of a liquid or gas. Such modeling focuses on
the crowd as a whole, not on its components. Models
of this type are mainly used in the simulation of dense
and large crowds in a short period of time. Thus,
the personal qualities of the members of the crowd
have almost no effect on the environment, reducing
behavioral factors and allow the study of the crowd
as a physical process.

An approach based on multiagent methods.
This approach describes simple rules of motion and
interaction of elements that determine the behavior of
each of the simulation objects. Each of the simulation
objects responds to any situation independently, based
on the described rules for decision making. Because
almost every type of behavior can be implemented
in different agents, increasing realism and giving
complete freedom to implement the behavior of the
researcher, this method is considered the most natural
for simulation.

There are already quite a lot of full-fledged products
on the market of crowd modeling tools, which are
mainly created for designing urban architecture

134 Tom 32 (71) N2 52021

with a view to avoiding crowds and modeling crisis
situations. They are all commercial products and
because of this, access to intellectual property like
code and model calculation algorithms is impossible.
Despite this, as mentioned at the beginning of the
section, the field of crowd prediction in various
emergencies is a very popular field of research in
the academic field, so we can analyze the developed
models of scientific work. In research [2] a model
was created to simulate the behavior of the crowd in
case of fire and to calculate the optimal evacuation
routes of a given room. Submodels were created in
the work, which paid attention to the flammability of
materials and the spread of fire and smoke throughout
the building. In the model [3] the work focused on
the concept of perception of the environment by
the agent in the scenario of evacuation of the crowd
from a certain area. Each agent, through both close
verbal communication and remote communication,
receives information to supplement the completeness
of the map of perception of the area. Each agent
subjectively perceives his environment and makes
decisions through a progressive decision-making
module. This model was also used to emulate the
spread of information in crowds during evacuations.
The work [4] is interesting in that each of the agents
has its own socio-psychological state, which affects
how the agent makes decisions and sets priorities.
The basic idea of this model is that different people
may react differently to the same stimulus depending
on their individual characteristics and psychological
characteristics.

The NetLogo software is written with the aim
of having many opportunities for experts, was
also considered. NetLogo allows to influence the
simulation with various switches, sliders, buttons and
other interface elements [5].

The NetLogo environment allows scientists to
study emergent phenomena that occur in systems of
elements, but are not inherent in individual elements
of the system. NetLogo includes models from various
fields of modeling, such as economics, physics,
chemistry, psychology, biology. In addition to using
existing models, NetLogo allows to create and
distribute custom models.

Mesa is a specialized agent modeling framework
for the Python language. Created with the aim of
becoming the main tool for researchers who want
to create agent models using the Python language.
It allows to create agent models using basic built-in
components or create and manually customize custom
models. Mesa also allows to visualize the simulations
and analyzes using a graphical browser interface. The

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

P epidemicT - NetLogo (0¥ ResearchLABM Bookimedels
|Fite Edit Tools Zoom Tabs Help
interface Info Code

/8 +

Edit Delete Add

normal speed
[-] | I
ticks: 183

Elwnisties: |

Epidemic Parameters

|1l

Behaviour Decisiors

it

Fig. 3. NetLogo interface [5]

Now, we set up the batch run, with a Let’s hold

B OB pphorneg Mo et % g
& 4 & 2ronisms everything fixed except for Homophily.
Schelling In [13): parameters = {“height": 10, "width": 18, "density”: 0.8, "minority pc”": 0.1
“homophily®: range(l,9
- ¢ eccssse L2 i
seeee o0 = e
. seeseROSe B8 In [14]: model reporters = {“Segregated Agents®: get_segregation)
AR EERENE RN N
e8sssssRRRRes In (24): param sweep = BatchRunner(SchellingModel, parameters, iterations=10,
esseses e8s & @ jax_steps=200,
(R R R X N LR N] model_rep rep
. @ a0 aeew
LR LA R RN] LR N
e e esse ese In [25): param sweep.run_all()
e8 osseRe LR N]
eS8 9® SSSBeRS In [26]: df = param_sweep.get_model vars_dataframe()
2889 S08 S00eN
R T In [28]: pit 1y, df | Agents)
esesssese sesee plt.grid(True)
*e Seee LR] L
(I E R R R AR RN NN N BN (1]
(AR R R R R R NN . < -
Pecsseseese one O < Fl
S8 S00BNRRREN (.19 : L L]
- ’ -
Happy agonte: 306 (13 . o Ll H
. H
ot " i = . L
g LE - - -
[t —_— I i L B |
o [+ i l
a0 :
L] o1
p - - .
uu L] # [} L BT o 1 H] 4 E) [] T []

Fig. 4. Example of a model interface created in Mesa [7]

main advantage of Mesa over other agent modeling
tools is that Mesa’s design is divisible and extensible,
thus allowing the creation of a decentralized
ecosystem of specialized user-created modules.

To create agents and models, we inherit the agent
or model class provided by Mesa. The databases of
these classes contain all the basic functions for the
interaction of the agent and the model [6].

A* Pathfinding Project is a powerful path search
system in Unity. It allows to find the most efficient path

for a moving object in a few lines of code. The system
supports grid, navigation and hexagonal graphs. The
system can automatically generate navigation graphs,
so that the developer does not waste time on manual
editing of navigation. A* Pathfinding Project is a
multi-threaded project, so even calling many paths
at once will not affect program performance. The
processing of the created paths includes smoothing
and a funnel algorithm. Already created paths can be
easily modified to suit your needs. The system supports

135

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

updating of graphs during the program operation, and
also has complete and clear documentation [8]. A* is a
mathematical search algorithm in the finding graph the
route with the lowest path cost from the initial vertex
to the final one, in graphs with positive edge weights.
The algorithm is an extension of Dijkstra’s algorithm.
The difference A* from Dijkstra’s algorithm is the
use of a heuristic estimate of the distance from the
selected vertex to the initial one. The algorithm tries to
minimize f{n):

fin)=g (n) + h (n),)]
where 7 is the next vertex under consideration, g (n) is
the cost of the path from the initial vertex to the vertex
n, and & (n) is a heuristic function that approximates
the cost of the cheapest path from # to the target vertex.
An example of a heuristic function for finding a path
can be the distance from the vertex to the goal, as the
physically smallest possible distance between points.

Fig. 5. A*algorithm operation example [8]

4 L)
\
v*)
.(x\
-
4

Fig. 6. Using Boids algorithm to describe the agent’s
behavior in the crowd (a — separation rule,
b — alignment rule, ¢ — cohesion rule)

136 Tom 32 (71) N@ 52021

Architecture and modules of the developed
software

Cross-platform tool Unity was chosen because
of the number of embedded systems focus not on
the implementation of graphical, physical and other
components, but on the algorithms and solution models
for agents. The Python language and the Django
framework are selected for the server part used to store
the program data. Python has the advantage of writing
and debugging code over other programming languages,
and Django allows to write web servers with a ready-
made graphical CRUD interface in a short amount
of time and programmatically access the database
using the built-in ORM. The PyCharm IDE, the most
popular Python development tool, was chosen as the
server development environment. Each of the software
modules performs a specific function that ensures the
correct interaction of the system. In general, all programs
developed on the Unity platform are subject to a similar
architecture. This does not prevent the implementation
of software templates and other architectural solutions,
in order to increase the efficiency and speed of product
writing. Each of the modules can exist independently of
each other, but somehow interacts with other modules
of the system through calls to event functions. Event
functions are a structural feature of programs in Unity.

Scripts in Unity are not subject to the usual type,
executed in a loop until they fulfill the set goal. Unity
passes control of the script by actually performing the
functions of the events described in it. Just a function
finished running, control is passed back to Unity, and
control is passed to the next function. These functions
are called event functions because they are called by
the Unity controller in response to events between
components. Event functions differ from ordinary ones
by predefined names, according to their functionality.
The most commonly used event functions Update is
performed each time before the program cycle (frame) is
updated, and Start, which is called before the first frame
and is used to initialize the component. In addition, there
are many functions created specifically to respond to
certain inter-component events. The following modules
can be distinguished in the structure of the developed
software: environmental module; agent module; agent
generation module; scene editing module; module of
interaction with the database. Each of these modules
performs a separate function and is connected to the
others by objects and events in the program scenes.

The Boids algorithm is used to describe the agent’s
behavior in the crowd (fig. 6). Separation means a
change of direction in order to avoid collisions with
close agents. Alignment means changing the direction
of movement in accordance with the direction of

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

movement of neighbors. Cohesion means the desire to
change position in the direction of the middle position

Figures 7, 8 and 9 show the editing of the simulation

scene of the developed software, the process of modeling
or center of mass of close agents. and testing of algorithms.

Fig. 7. Editing the simulation scene of the developed software

L_Tiles |
__Zones |

Fig. 8. Modeling process of the developed software

Fig. 9. Testing algorithms

137

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

Conclusions and future work. In this research
existing software solutions for agent modeling
and projects are analyzed. Requirements for the
developed software are formed and defined. The
developed software allows to model the behavior of
people during an emergency situation. The developed
software was tested and the results according to which

the software meets the requirements were analyzed.
Ways to further develop the proposed software are
to create a module for viewing simulations, machine
analysis of simulations, creating dynamic simulation
schedules, introducing new interactive objects of
interest to the agent and improving the user interface
of the program.

References:

1. Crowd Simulation Modeling Applied

to Emergency and Evacuation Simulations.

URL: https://arxiv.org/ftp/arxiv/papers/1303/1303.4692.pdf.

2. Agent-Based Evacuation Model Incorporating Fire Scene
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber =6074190.

3. Agent Perception Modeling for Movement in Crowds. URL: https://www.researchgate.net/
publication/235919357 Agent Perception Modeling for Movement in Crowds.

4. Crowd simulation influenced by agent’s socio-psychological state. URL: https://arxiv.org/abs/1004.4454.

5. NetLogo. URL: https://ccl.northwestern.edu/netlogo./

6. Utilizing Python for Agent-Based Modeling: The Mesa Framework. URL: https://www.researchgate.net/
publication/344675633 Utilizing Python for Agent-Based Modeling The Mesa Framework.

7. A Mesa implementation of the Schelling segregation model. URL: https://www.researchgate.net/figure/
A-Mesa-implementation-of-the-Schelling-segregation-model-being-visualized-in-a-browser figl 328774079.

8. A* Pathfinding Project. URL: https://arongranberg.com/astar/front.

and Building Geometry.

Ounemenxo JI.M., Measenes M.I., Koopun /I.P., Cykano M.JI. IPOTPAMHE 3ABE3IIEYEHHSA
IJIsI ATEHTHOI'O MOJEJIIOBAHHS NIOBEAIHKU HACEJIEHH S
Y HAJI3BBUYAHHUX CUTYAIISIX

Mooicnusicms npoeHo3y8aHHA NOBEOIHKU HACENEHHA 8 HAO38UYANHUX CUMYayisax YiHHA 8 0a2amvbox KOH-
mexcmax. Cumyayii, no8 ’sa3ani 3 NAHIKOI0, GUKOPUCMOBYIOMbCS 0151 MOOENI0BANHHS NOBEOIHKU HAMOBNY U PO3-
POONeHHs. NPOSPAMHUX piutelb O 3a0ay e8aKyayii HaceleHHs Ni0 4ac 6UHUKHEHHS HAO38UYALIHOL cumyayii.
Y emammi pozensinymo 0ocnioscennsa mooeneti pyxy a0oell y Ha036UYAiHUX CUYAYIAX, NPOAHALI308AHO iCHY-
104l (hpetimeopKU 1l NpocpaMHi 3acobU O A2eHMHO20 MOOeN08AHH nogedinku Hamosany. Ha ocnosi npo-
8€0eHUX Q0CAI0NCEHb NPO NOBEOIHKY AI00el y HAMOBNI 1l OOCHYRHUX NI0X00i6 00 MOOeN08AHHS PYXY Jiooell |
Hamo8ny 8 Ha036UYAHIll cumyayii cghopmyibO8AHO BUMOSU 00 NPOSPAMHO20 3A0e3NeUeHH: MONCIUBICIb KOH-
Qicypayii koocno2o 3 acenmis,; MOJNCIUBICING 3MIHU 2eOMeMPIi NPUMILeHb, Napamempusayis Mooeii, Kopek-
MHa poboma aneopummie 3a 8enuKoi KiibKOCmi a2eHmia, Ypaxysamnts NoJs 30py adzenmis, peanizayis 0ompu-
MAHHA 0COOUCIO20 NPOCMOP)Y TIOOUHU, Peanizayis areopummy OJisl SMIHU MPAEKMOPIL pyXy 8 pazi 3imKHEeHH,
peanizayis (heHoMeHi8 NAHIKU HAMOBNY,; PO3PAXYHOK 2YCIMUHU HAMOBNY; MONCIUBICHb BUNAOKOB020 PO3NOOIILY
a2enmis, MOJNCIUBICHb PYUHO20 PO3NOOLLY A2eHMI8, IMNOPM Md eKCNOpm pe3yibmamy ananizy npospamu y
dopmwam JSON. Ilpedcmasneno 3aeanonuti onuc apximexkmypu i po3pooseHux npocpamHux Mooyiie cmeope-
HO20 npoepamuozo 3avesneverns. Cmeopeni Mooy MICMAMb MOOYIb HABKOTUUWHBLO2O CePedosUuLyd, MOOYIlb
azenma, MooOyIb ceHepayii acenmis, MoOYib peddzysanHs CyyeHU, MoOYIb 83aEmo0ii 3 6azow danux. Onucano
apximexmypy npoepamuoco 3abesneuents, po3poonerozo na niameopmi Unity, i 63a€M00it0 OCHOBHUX KOM-
nouwenmis. s po3pobnents npocpamnoco 3abesneuenns guxopucmano mexnonocii A* Pathfinding Project
07151 3a0e3nevenHs: eHyYKo2o Ul HAOIHO20 NOWYKY ulisaxis, petimeopk Django ons cmeopenns API cepsepy
30epedcents oanux, bioniomexy djongo ons inmeepayii 3 6azoio danux MongoDB.

Knwuosi cnosa: npocpamue 3abesneuenHs, HA036UYAUHA CUNMyayis, azeHmue Mooento8anus, Python,
¢petimeopx Django, Unity, MongoDB.

138 Tom 32 (71) N2 52021

